COP 3330: Object-Oriented Programming
Summer 2011

Classes In Java — Part 3
Abstract Classes and Interfaces

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3330/sum2011

Department of Electrical Engineering and Computer Science
Computer Science Division
University of Central Florida

COP 3330: Classes In Java — Part 3 Page 1 © Dr. Mark Llewellyn

Abstract Classes

* In the Inheritance hierarchy, classes become
more specific and concrete with each new
subclass. If you move from a subclass back up
to a superclass, the classes become more general
and less specific.

» Class design should ensure that a superclass
contains common features of Its subclasses.

« Sometimes a superclass Is so abstract that it
cannot have any specific instances. Such a class
Is called an abstract class.

’

COP 3330: Classes In Java - Part 3 Page 2 © Dr. Mark Llewellyn g").

Abstract Classes

* Recall our GeometricObject class that was
the superclass for Circle and Rectangle.

e The GeometricObject class models
common features of geometric objects.

« Both the Circle and Rectangle classes
contain the getArea () and
getPerimeter () methods for computing the

area and perimeter of a circle and a rectangle.

’

COP 3330: Classes In Java— Part 3 Page 3 © Dr. Mark Llewellyn g").

GeometricObject

— color: String =
— filled: boolean Orlglnal UML classes

- dateCreated: java.util.Date

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date
+ toString(): String

JZAN

I I
Circle Rectangle
- radius: double

— width: double
- height: double

+ Circle()
+ Circle(radius: double) + Rectangle()

+ getRadius(): double _ + Rectangle(width: double, height: double)
+ setRadius(radius: double): void + getWidth(): double

+ getArea(): double + setWidth(width: double): void
+ getPerimeter(): double + getHeigth(): double

+ getDiameter(): double + setHeight(height: double): void
+ printCircle(): void + getArea(): double

+ getPerimeter(): double

COP 3330: Classes In Java — Part 3 © Dr. Mark Llewellyn

The original Rectangle class

retorn height;
y//end getHeight method

/% et a new height */

= poblic vold =setHeight (douoble height) {
thi=s.height = height;

}Y//end setHeight method

/* Return area */ \\\

= public double getArea() {
retorn width * height;
}//end getArea method

/% Return perimeter */
= public double getPerimeter() {

retorn 2 * (width + height);
}//end getPerimeter method 4//

}//end Rectangle class

COP 3330: Classes In Java — Part 3 Page 5 © Dr. Mark Llewellyn

i o o .
|J| Rectangle.java ﬂII Circlejava &2 The orlglnal Circle class

FJi & Lflld oL ld B i LIE DI

J* Return area */
public douoble gethArea() {

retorn radius * radius * Math.PI;
Y/ /end getihrea method

JS* Beturn diameter *#/

pollic douoble getDiameter() {
retorn 2 * radius;

}/Send getDiameter method

/* Return perimeter */
poblic doubkle getPerimeter () {

retorn 2 * radius * Math.PI:
}//end getPerimeter method

JS* Primt the circle info #*/
public vold printCircle () {
system.ocnb.println ("The circle i=s created " + getba'
" and the radius=s i= " 4 radiu=s):;

COP 3330: Classes In Java — Part 3 © Dr. Mark Llewellyn

Abstract Classes

 However, our earlier design was somewhat
lacking in that you can compute the area and
perimeter of all geometric objects, hence these
are not properties of circles or rectangles, but of
geometric objects.

« A Detter design would be to declare the
getArea () and getPerimeter () methods

In the GeometricObject class. But there Is
a problem doing this. What is the problem?

’

COP 3330: Classes In Java - Part 3 Page 7 © Dr. Mark Llewellyn g").

Abstract Classes

» The problem is that in the GeometricObject
class we can’t provide an implementation for
these methods because their Implementation
depends on the specific type of geometric object.

— To compute the area of a circle we need to use the
expression perimeter = 2mr, but for a rectangle
the expression IS perimeter =
2 (height+width) .

e In order to define these methods In the
GeometricObject class, they need to be defined
as abstract methods.

’

COP 3330: Classes In Java— Part 3 Page 8 © Dr. Mark Llewellyn g").

Abstract Classes

« An abstract method is specified using the abstract modifier in
the method header.

— Example:
public abstract double getAreal():;

« Similarly, an abstract class Is denoted using the abstract
modifier in the class header.

— Example:

— public abstract class GeometricObject {

J

* |In UML notation, the names of abstract classes and their methods
are italicized (see pages 9-10 of Introduction to UML notes).

#
COP 3330: Classes In Java — Part 3 Page 9 © Dr. Mark Llewellyn @j

Abstract Classes

Abstract classes are like regular classes with data fields and
methods, but you cannot create instances of abstract classes using
the new operator.

An abstract method Is a method signature without
Implementation. Its implementation is provided by the
subclasses.

Any class that contains an abstract method must be declared
abstract.

The constructor of an abstract class Is declared protected,
because it i1s used only by subclasses. When you create an
Instance of a concrete subclass, the subclass’s parent class
constructor is invoked to initialize data fields in the parent class.

Let’s now reconsider the GeometricObject case and redesign it
using abstract classes and methods.

#
COP 3330: Classes In Java — Part 3 Page 10 © Dr. Mark Llewellyn @j

GeometricObject
_ color: String The original UML
- filled: boolean i
— dateCreated: java.util.Date dlag ram_ for the
— GeometricObject
+ GeometricObject() .
+ getColor(): String hlerarchy

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date
+ toString(): String

JZAN

I I
Circle Rectangle
- radius: double

— width: double
- height: double

+ Circle()
+ Circle(radius: double) + Rectangle()

+ getRadius(): double _ + Rectangle(width: double, height: double)
+ setRadius(radius: double): void + getWidth(): double

+ getArea(): double + setWidth(width: double): void
+ getPerimeter(): double + getHeigth(): double

+ getDiameter(): double + setHeight(height: double): void
+ printCircle(): void + getArea(): double

+ getPerimeter(): double

COP 3330: Classes In Java — Part 3 Page 11 © Dr. Mark Llewellyn

Abstract class (italics)

————> GeometricObject

Constructor

- color: String
- filled: boolean
- dateCreated: java.util.Date

denoted as
protected

Abstract methods
(italics)

% # GeometricObject()

+ getColor(): String
+ setColor(color: String): void
+ isFilled(): boolean

The new UML
diagram for the
GeometricObject
hierarchy using an
abstract class and

- radius: double

+ Circle()
+ Circle(radius: double)
+ getRadius(): double

+ getDiameter(): double
+ printCircle(): void

+ setRadius(radius: double):

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date methOdS

+ toString(): String

>+ getArea(): double
:r+ getPerimeter(): double
AN
I |
Circle v . Rectangle
~ | Methods 1
getArea and - width: double
getPerimeter - helght double
are overridden in
Circle and + Rectangle()
Fiectane Ley + Rectangle(width: double, height: double)
. Overridden + getWidth(): double

void methods are + setWidth(width: double): void
commonly + getHeigth(): double
generally omitted | | + setHeight(height: double): void
in the UML for
subclasses.

COP 3330: Classes In Java — Part 3

Page 12

© Dr. Mark Llewellyn

Abstract Classes

 Now let’s re-write the GeometricObject class
using abstract methods which will convert it into an
abstract class.

« \What changes will we need to make to the Circle
and Rectangle classes?

« Answer: Absolutely nothing! We will need to
provide implementations for the getArea () and
getPerimeter () methods in both classes, but
they already have them (thus they override the ones
defined in the GeometricObject class!)

’

COP 3330: Classes In Java — Part 3 Page 13 © Dr. Mark Llewellyn g").

FLAe =0 " T T T

fm Circle,ava ﬂl] GeometricObject,java (m *AbstractGeometricOb Eﬁy}l

= /% BAbstractGeometricCbject Class - Classez In Java

E = used to i1illustrate abstract classes/inheritance in 00/ Java

k|

MJL June 7, 2011

Declare class as abstract

* No known bugs

& f

public abstract class AbstractGeometricCbiject {
private String color = "white";
private boolean filled;
private java.util.Date dateCreated;

Denote constructor as protected
(Go to page 23 for more
Tecric obiect 4 information on this modifier.)

/% Construct a defanl

= protected AbstractGeometricCbiject() {
dateCreated = new java.util.Date():
y//end default constructor

4 k

COP 3330: Classes In Java — Part 3 Page 14 © Dr. Mark Llewellyn e

—

i
] Rectanglejava] Circlejava) GeometricObject java

/# Return & string representation of this obiject #/

4 = puoblic 3tring toString() f{
return "created on " + dateCreated + "\ncolor: " + color +

" and filled: " + filled;
}//end toString method

Declare abstract method getArea ()

returning the area of a geometric obiject */

/* ab3tract methg
public abstract double getlArea();

[Note: No braces! J

I /* abstract method for returning the perimeter of a geometric object *f

public abstract double getPerimEtertf?
Declare abstract method getPerimeter ()

i

}//end clazs GeometricObject
:

© Dr. Mark Llewellyn

COP 3330: Classes In Java — Part 3 Page 15

Abstract Classes

« Now let’s write a class to test the abstract version of the
GeometricObject class.

« We’ll use the example to illustrate not only how
abstract classes work, but also illustrate the advantages
of using abstract classes.

 Notice that If the methods getArea and
getPerimeter Where only defined in the Circle
and Rectangle classes and not In the
GeometricObject class, we would not be able to
define the equalArea and displayObject
methods shown in this example.

’

COP 3330: Classes In Java — Part 3 Page 16 © Dr. Mark Llewellyn g").

GeometricObject

TestAbstractGeometricObject

- color: String
- filled: boolean
- dateCreated: java.util.Date

GeometricObject() .
+ getColor(): String + equalArea (x: | |
+ setColor(color: String): void AbstractGeometricObject, y:

+ isFilled(): boolean AbstractGeometricObject) : boolean
+ setFilled(filled: boolean): void
+ getDateCreated(): java.util.Date + displayGeometricObject (x:

+ toString(): String : . : .
+ getArea(): double AbstractGeometricObject) : void

+ getPerimeter(): double

JZAN

I |
Circle Rectangle

- radius: double - width: double
- height: double

+ Circle() + Rectangle()

+ Circle(radius: double) + Rectangle(width: double, height: double
+ getRadius(): double + getWid?h()(: double e)

+ setRadius(radius: double): void + setWidth(width: double): void
+ getDiameter(): double + getHeigth(): double

+ printCircle(): void + setHeight(height: double): void

COP 3330: Classes In Java — Part 3 Page 17 © Dr. Mark Llewellyn

r’m Circle,java (m Rectanglejava ﬂIl TestAbstractGeometricObject.java 2

public class TestlbstractGeometricObject {

J*¥* I method for comparing the areas of two geometric objects #*/
= public =static boolean equaliArea (AbstractGeometricCbhbject objectl,
AbstractGeometricObject objectl2) {
return objectl.gethrea() == objectZ.gethrea():
}V//end method equallirea
f** B method for displaying a geometric object */

= public static volid displayGeometricCbject (AbstractGeometricObject object) {
System.out.println{):
System.out.println("The area iz " + object.getlArea()):
System.out.println("The perimeter i=s " + object.getPerimeter()):
}//end method displayGeometricCbhject

/#*% Main method */

= puoblic static void main(String[] args) {
J/ Declare and initialize three geometric objects
System.ﬂut.printlnt"knbreating a circle object with radius of 5.");
LhstractGeometricObject geolbijectl = new Circle(5); //implicit casting
System.out.println ("Creating a rectangle with width 5 and height 3.");
ObstractGeometricCbiect geolbiject? = new Rectangle (5, 3); //implicit casting
System.out.println ("Creating a rectangle with width 3 and height 5.");
ObstractGeometricCbiect geolbiject3 = new Rectangle (3, 5); //implicit casting

COP 3330: Classes In Java — Part 3 Page 18 © Dr. Mark Llewellyn c

e

] Circlejava (m Rectangle.java (m TestAbstractGeometricObject,java Eﬂ-\

i e ot e ettt el e i i et A | e el e o Bt e et ekt TT A e b Sl e | - = S e

Syatem.cut.println("\nDoes geolbjectl have the same area as geolbiect2? " +
equaldrea(geolbjectl, geolbjectl));

Syatem.cut.println("\nDoes geolbject? have the same area as geolbiect3? " +

equaldrea (geolbject?, geolbject3));

// Display circle characteristics

System.out.print ("\nFor the circle (geoCbijectl):");

displayGeometricObisct (geolbiectl) ;

//Display rectangle 1 characteristics

Syatem.cut.print ("\nFor the first rectangle (geolbiject2):™):

displayGeometricObiect (geolbiectl) ;

//Display rectangle 2 characteristics

System.cut.print ("\nFor the second rectangle (geolbject3):"):

displayGeometriclbiect (geolbject3d) ;

}//end main method

}//end class TestlbstractGeometricObiect

COP 3330: Classes In Java — Part 3 Page 19 © Dr. Mark Llewellyn

=

[%: Problems | @ Javadoc | [, Declaration | Bl Console 3

=

<terminated> TestAbstractGeometricObject [Java Application] C:\Program Files'Java'jref\bin‘javaw.ex

X % | G RE[EE = 3 -3

Creating a circle object with radius of 5.

Creating a rectangle with width S and
Creating a rectangle with width 3 and

Doe= geolbject]l hawve the =ame area as
Doe=z geolbjectZ hawve the =ame area as
For the circle (gecCbhjectl):

The area is T8.53981633974483

The perimeter i= 31.41592653589793
For the first rectangle (geoclbjectl):

The area i=s 15.0
The perimeter i=s 16.0

the =second rectangle ([(geoclbject3) :

area is 15.0
perimeter i= 16.0

height 3.
height 5.

geclObiject2? false

geclbject3? true

COP 3330: Classes In Java — Part 3 Page 20

© Dr. Mark Llewellyn

Interesting Points On Abstract Classes

An abstract method cannot be contained In a nonabstract
class.

If a subclass of an abstract superclass does not implement
all the abstract methods, the subclass must also be declared
abstract. In other words, In a nonabstract subclass extended
from an abstract class, all the abstract methods must be
Implemented, even if they are not used in the subclass.

Abstract methods cannot be static.

An abstract class cannot be instantiated using the new
operator, but you can still define its constructors, which are
iInvoked implicitly by the constructors of its subclasses. For
example, the constructors of GeometricObject are
Invoked Inthe Circle and Rectangle classes.

¢

COP 3330: Classes In Java — Part 3 Page 21 © Dr. Mark Llewellyn g").

Interesting Points On Abstract Classes

A class that contains any abstract methods, must be declared
as abstract. However, It IS possible to declare an abstract
class that contains no abstract methods! In this case, you
cannot create instances of the class using the new operator.
This class would be used as a base class for defining a new
subclass only.

« A subclass can be abstract even if its superclass is concrete.
For example, the Object class Is concrete, but its
subclasses, such as GeometricObject, may be abstract.

« A subclass can override a method from its superclass to
declare it abstract. This is very unusual, but is useful when
the implementation of the method in the superclass becomes
iInvalid in the subclass. In this case, the subclass must be
declared abstract. ;

COP 3330: Classes In Java — Part 3 Page 22 © Dr. Mark Llewellyn g").

More On Accessibility Modifiers

So far this semester, we’ve mostly used public and private
accessibility modifiers for our class variables and methods. With

the introduction of abstract classes, we now need to expand this to
Include the protected modifier.

A protected data or protected method in a public class can be
accessed by any class in the same package or its subclasses, even
If the subclasses are in different packages.

Packages are simply a way to organize files into different
directories, usually based on functionality, usability, or category.
Packaging is a way to avoid class name collisions when the same
class name is used.

The accessibility modifiers are summarized in the table on the
next page.

#
COP 3330: Classes In Java — Part 3 Page 23 © Dr. Mark Llewellyn @j

More On Accessibility Modifiers

Modifier on
members in a
class

Access from
the same
class

Access from
the same
package

Access from a
subclass

Access from a
different
package

public

yes

yes

protected

(default)

private

yes

COP 3330: Classes In Java — Part 3

Page 24

© Dr. Mark Llewellyn

package pl:

public class C1{ public class C2{
public int x; Cl o = new C1();
protected int vy; can access 0.X;
int z; can access 0.Y;

private int u; can access 0.z;
cannot access o0.u;

protected void m() { }

AN

can invoke o.m{() ;

public class C3
extends C1{ package p2
can access X;
can access y;
can access z;
cannot access uy;

public class C4 public class C5¢{
extends CI1{ Cl o = new Cl1();

can access X; can access 0.X;
can access y; cannot access o.
cannot access z; cannot access o.

can invoke m();
cannot access uj; cannot access o.

can invoke m() ; cannot invoke

COP 3330: Classes In Java — Part 3 Page 25 © Dr. Mark Llewellyn

More On Accessibility Modifiers

Use the private modifier to hide members of a class
completely so that they cannot be accessed directly
from outside the class.

Use no modifiers (default case) in order to allow the
members of the class to be accessed directly from any
class within the same package but not from other
packages.

Use the protected modifier to enable the members
of the class to be accessed by the subclasses In any
package or classes in the same package.

Use the public modifier to enable the members of the
class to be accessed by any class.

’

COP 3330: Classes In Java — Part 3 Page 26 © Dr. Mark Llewellyn g").

More On Accessibility Modifiers

A class can be used in two ways: for creating instances of the
class, and for creating subclasses by extending the class.

Make the members private If they are not intended for use
from outside the class.

Make the members public If they are intended for the users
outside of the class.

Make the fields or methods protected if they are intended for
the extenders of the class, but not the users of the class.

The private and protected modifiers can be used only for
members of the class. The public modifier and the default
modifier (i.e. no modifier) can be used on members of the class
as well as on the class itself. A class with no modifier (i.e., not a
public class) is not accessible by classes from other packages.

’

COP 3330: Classes In Java — Part 3 Page 27 © Dr. Mark Llewellyn g").

More On Accessibility Modifiers

« One additional note — a subclass may override a
protected method In Its superclass and
change its visibility to public. However, a
subclass cannot weaken the accessibility of a
method defined in the superclass.

« For example, If a method is defined as public
In the superclass, it must be defined as public
In the subclass.

COP 3330: Classes In Java — Part 3 Page 28 © Dr. Mark Llewellyn g").

Preventing Extending and Overriding

e Sometimes you may want to prevent classes

from being extended. In such cases, use the
final modifier to indicate that a class is final

and thus cannot be a parent class.

— In Java, the Math class and the String class (among
others) are defined as final meaning that you cannot
extend the class.

* You can also define a method to be final, a final
method cannot be overridden by its subclasses.

’

COP 3330: Classes In Java — Part 3 Page 29 © Dr. Mark Llewellyn g").

Interfaces

An interface Is a class-like construct that contains only constants
and abstract methods. (It is class-like because it is not technically

a class but rather a partial template of what must be in a class that
Implements the interface.)

In many ways an interface is similar to an abstract class, but the
Intent of an Interface Is to specify common behavior for objects.

An interface Is a Java type and can be used as such.
The Java syntax for declaring an interface is:

modifier interface InterfaceName {
// constant declarations

// method signatures

#
COP 3330: Classes In Java — Part 3 Page 30 © Dr. Mark Llewellyn @j

Interfaces

« An Interface cannot specify any method implementations. All
methods of an interface must be declared public abstract.

« All of the variables of an interface must be declared public,
final and static.

« All of the methods of an interface must be public.

— Since all data fields are public final static and all methods are public
abstract in an interface, Java allows these modifiers to be omitted in an
Interface declaration. Therefore, the following declarations are equivalent.

public interface T { public interface T {

public static final int K = 1; . int K = 1;
equivalent
public abstract void m(); void m() ;

#
COP 3330: Classes In Java — Part 3 Page 31 © Dr. Mark Llewellyn @j

Interfaces

« An Interface Is treated like a special class In
Java. Each interface is compiled into a separate
bytecode file, just like a regular class.

« As with an abstract class, you cannot create an
Instance from an interface using the new
operator, but In most cases you can use an
Interface more or less the same way that you use
an abstract class.

— For example, you can use an interface as a data type
for a variable, as the result of casting, and so on.

’

COP 3330: Classes In Java — Part 3 Page 32 © Dr. Mark Llewellyn g").

Interfaces

» The relationship that exists between a class that
uses an Interface and the Interface itself i1s
known as Interface inheritance.

* Interface Inheritance and class inheritance are
essentially the same thing, although in Java a
class can use class inheritance from only one
class (its superclass), but can use interface
Inheritance from several interfaces.

 Typically both forms are simply referred to as
Inheritance.

¢

COP 3330: Classes In Java - Part 3 Page 33 © Dr. Mark Llewellyn g").

Interfaces

« Lets’ create a simple interface:

// an interface to describe how to eat
public interface Edible {
public abstract String howToEat () ;

« The Edible interface can now be used anytime you want

to specify how something should be eaten.

« Using an interface is accomplished by letting the class

for an object implement the interface.

COP 3330: Classes In Java — Part 3 Page 34 © Dr. Mark Llewellyn

7
()
S,

[J] *TestEdiblejava 52 - [J] Ediblejava |

puklic clas=s TestEdibkle {
= polxlic static vold main(String[]l] arxrgs) {

Chject[] objects = {inew Lpplel()l, new COrange (), new Banana() r-
for (int i = 0; i <« object=.length; i4++)
if (object=[i] instanceof Edikbhle)
Svesten.ocutbt.println(((Edible)object=s[4i]) -howIToEat ()}) -
H
3 Use the keyword implements in
/ order for a class to utilize an interface.

ab=tract class Fruit implements Edibkle {

Data ld=, constructors, and methods omitted here

}
Fruit does not implement the howToEat
class Apple extends Fruit { method, it must be denoted as abstract.
= poblic String howToEat () 1
retorn "apple: Make an apple pie. ™
}

H

class Orange extend=s Fruait {
= — poblic String howToEat () 1
retorn "Orange: HMake orange juice.™;

class Banana extends Frait {
C= T — poblic String howToEat () 1
retorn "Banana: First peel it, then take a bite.":

1

COP 3330: Classes In Java — Part 3 Page 35 © Dr. Mark Llewellyn

= Java - Interfaces/src/TestEdible.java - Fclipse

File Edit 5ource Refactor Mawvigate Search Project Run Window Help

= WO -G HEY BB
ERLIEEC R R I S

\J| TestEdiblejava &3 [J] Ediblejava

pobklic class TestEdikle {
pobklic static void main(String[[]l args) {
Chiject[] objects = {new Apple (), new Orange (), new Bananail) ¥:
for (int i = 0; i < objects.length; i++)
if (object=[i] in=tanceof Edikble)
Svstem.ocub.printlin(((Edibkle)lobject=s[4i]) .howTocEat ()})

4

[2/ Problems | @ Javadoc | [, Declaration | & Console 52
<terminated> TestEdible [Java Application] C:\Program Files\Java\jreb\binjavaw.exe (Jun 7, 2011 1:59:19 PM)

X % | G B[EE)
Apple: Make an apple pie.
Crange: Make orange juice.

Banana: First peel it, then take a bite.

Writable Smart Insert

COP 3330: Classes In Java — Part 3 Page 36 © Dr. Mark Llewellyn

The Comparable Interface

Suppose you want to design a generic method to find the larger
of two objects. The objects could be students, circles, rectangles,
etc.

Since compare methods are different for different types of
objects, you need to define a generic compare method to
determine the order of the two objects. Then you can tailor the
method to compare students, circles, rectangles, etc.

For example, you could use student ID as the key for comparing
students, radius as the key for comparing circles, and area as the
key for comparing rectangles.

We’ll use an interface to define a generic compareTo method,
as shown on the next page.

’

COP 3330: Classes In Java — Part 3 Page 37 © Dr. Mark Llewellyn g").

The Comparable Interface

// Interface for comparing object - as defined in java.lang
package java.lang;
public interface Comparable {

public int compareTo (Object obj);

 The compareTo method determines the order of this
object with the specified object obj, and returns a
negative integer, zero, or a positive integer If this object

IS less than, equal to, or greater than the specified object
ob7.

”
COP 3330: Classes In Java — Part 3 Page 38 © Dr. Mark Llewellyn gjj

The Comparable Interface

« Many classes in the Java library (e.g., String and Date)
Implement Comparable to define a natural order for the
objects. If you look at the source code of these classes, you

will see the following definitions:

public class String extends public class Date extends

Object implements Comparable { Object implements Comparable {

//class body omitted //class body omitted

#
COP 3330: Classes In Java — Part 3 Page 39 © Dr. Mark Llewellyn @j

The Comparable Interface

» Thus, strings are comparable, and so are dates.
Let s be a String object and d be a Date

object. All of the following expressions are true:

s instanceof String

s instanceof Object

s instanceof Comparable

d instanceof java.util.Date

d instanceof Object

d instanceof Comparable

COP 3330: Classes In Java — Part 3

Page 40 © Dr. Mark Llewellyn

The Comparable Interface

« Now we can declare a generic max method for finding the larger
of two objects.

e Let’s write two different versions and see which one is better.

J| TestEdible,java | Edible.java 1J| MaxVersionl java &2 -)] MaxVersion2 java

public class MaxVerszionl {
//return the maximum of two objects
public static Comparable max (Comparable objl, Comparable obj2){
1f (objl.comparelo({objl) > 0)
retorn objl;
else
retuorn obj2;
}//end max method
y//end c;asb MaxVerzionl

COP 3330: Classes In Java — Part 3 © Dr. Mark Llewellyn

The Comparable Interface

e Here’s version #2:

rm TestEdible.java (m MaxVersionl.java rm Max\Versiond.java E‘E\\i}l

— find the larger of two objects

public class MaxVersionZ {
J/return the maximum of two objects
public static Cbhject max (Cbject objl, Cbject objl2){
1f (((Comparable)lob]l) .compareTo(obj2) > 0)
retorm objl:;
else
retorn objZ:
yr//end max method
Y /end class MaxVersionZ

r

COP 3330: Classes In Java — Part 3 Page 42 © Dr. Mark Llewellyn

The Comparable Interface
Which of the two versions of Max IS better?

Version #1 Is simpler than the version #2. In version #2, obj1 IS
declared as Object, and (Comparable)objl tells the
compiler to cast objl Into Comparable so that the
compareTo method can be invoked from obj1. However, no
casting is needed in version #1, since obj1 Is declared as
Comparable.

The max method In version #1 IS more robust that the one In
version #2. You must invoke the max method with two
comparable objects.

— Suppose you were to invoke max with two noncomparable objects such
as: Max.max (anyObjectl, anyObject2); The compiler would
detect an error using version #1, because anyObject1 IS not an instance
of Comparable. In version #2 however, the compiler will not detect an
error but a run-time error (ClassCastException) would occur
because anyObject1l is not an instance of Comparable and cannot be
cast into Comparable.

’

COP 3330: Classes In Java - Part 3 Page 43 © Dr. Mark Llewellyn g").

The Comparable Interface

» S0, version #1 is the better solution to our problem.

« We’ll assume that this iIs the version that will be included In our
Comparable Interface.

« Since strings and dates are comparable, you could use the max
method to find the larger of two instances of String or Date
as shown in the examples below:

String sl = “abcedf”; The return value from the
Siering 87 = Vebedee” s max method is of the
Comparable type, SO you

String s3 = (String)Max.max(sl, s2); need to use explicit casting

Date dl = new Date();

Date d2 = new Date();

Date d = (Date)Max.max (dl, d2);

#
COP 3330: Classes In Java — Part 3 Page 44 © Dr. Mark Llewellyn @j

The Comparable Interface

« As things stand right now, we cannot use the
max mMmethod to find the larger of two Instances

of Rectangle. Why?

 Because the Rectangle class does not
Implement the Comparable Interface (it only
extended the GeometricObject class).

« S0, let’s declare a new Rectangle class that
Implements the Comparable interface. This IS

shown on the next page.

”

COP 3330: Classes In Java — Part 3 Page 45 © Dr. Mark Llewellyn g’);

The ComparableRectangle Class

)| ComparableRectanglejava
/fComparableRectangle class extends Eectangle class and implements
f/the Comparable interface

f/MJIL June 2011
public class ComparableBRectangle extends Eectangle implements Comparable {

TL

/feconstructor method
= puoblic ComparableRectangle (double width, douoble height) {
super (width, height);
}//end constructor

F/IMplement the compareTo() method defined in Comparable
= puoblic int comparelTo (Cbject o) {

if (this.gethArea() > ((ComparableRectangle)o).gethrea())
retorn 1;

else 1f (this.gethArea() < ((ComparableRectangle)o).gethrea())
retuorn -1;

else
retaorn 0O;

Y//end implementation of compareTof)
}//end class ComparableRectangle

COP 3330: Classes In Java — Part 3 Page 46 © Dr. Mark Llewellyn

i
4¥| ComparableRectangle.java

)] TestComparableRectangleja &2

[J| GeometricObject.java 1 [J] Rectanglejava

= /% TestComparableRectangle Class
a driver clas=s to test the comparable interface used in
the ComparableRectangle class
* MJL June 2011 Modification of the TestCircleRectangle
o7 Class to use ComparableRectangle
objects
poblic class TestlComparableBectangle {
= poblic =s=tatic void main(String[] args) {
System. cut.println("\nCreating two comparabale rectangle objects."):
ComparableBectangle rectanglel = new ComparableBRectangle (4,6);

= new ComparableRectangle (4,5):
rectanglel) ;

rectangle’?
HaxVerszionl.max(rectanglel,

ComparableRectangle
Comparable whichone

if (whichone.equals (rectanglel))
Svztem.ovt.println("Bectangle 1 is larger than Bectangle 2."):
el=ze System.out.println("BEectangle 2 i=s larger thamn ERectangle 1.");
System. cut.println ("\nCreating two more comparable rectangle objects.™):
ConmparableRBectangle rectangled = new ComparableBRectangle (3,3):
ConmparableBectangle rectangled = new ComparableBRectangle (S,3):;
switch (rectangleld.conparelol(rectangled)) {
caze -1: System.out.println("Rectangle 3 is smaller than ERectangle 4.%");
break:
caze 0: System.ocut.println("BEectangle 3 and Rectangle 4 are the =zame =size.”
break:
caze 1: System.ocut.println("BEectangle 3 is larger than ERectangle 4."):;
break:
defanlt: System.out.println("ERRCE..."):
¥/ /end switch
¥//end main method
Y/ /end class TestComparableRectangle

COP 3330: Classes In Java — Part 3 Page 47 © Dr. Mark Llewellyn

'r |
)] ComparableRectanglejava li@ TestComparableRectangleja &2 J| GeometricObject.java 1 J] Rectanglejava 1 |

Syvstem.ocut.println("\nCreating two comparabale rectangle objects."): |E|
ComparableRectangle rectanglel = new ComparableBRectangle (4,6);
ComparableRectangle rectanglel = new ComparableRectangle (4,5);
Conmparable whichone = MaxVersionl.max(rectanglel, rectanglel);
if (whichone.equals (rectanglel)) B
System.out.println ("Rectangle 1 is larger than Rectangle 2.");
elze System.out.println("Rectangle 2 iz larger than Rectangle 1."):
System.ocut.println("\nCreating two more comparable rectangle objects."):
ConmparableRectangle rectangle3 = new ComparableBRectangle(3,3):;
ComparableRectangle rectangled = new ComparableRectangle(3,3):;
switch (rectangle3.compareTlo(rectangled)) {
case -1: System.ocut.println("Bectangle 3 iz smaller than Rectangle 4.");
break; |3

m

1 | i | b

rlL Problems (@ Javadoc ﬂ% Declaration (E Console % 14 %| =" 5E| AR~

<terminated> TestComparableRectangle [Java Application] C\Program Files\Java'yred\bin'javaw.exe (Jun 7, 2011 2:36:22 PM)

/ Using MaxVersionl class
Creating two comparabale rectangle objects.

and max method
Rectangle 1 is larger than Rectangle 2.

Creating two more comparable rectangle objects. <« Using compareTo method

Rectangle 3 is smaller than Rectangle 4. in ComparableRectangle

class

COP 3330: Classes In Java — Part 3 Page 48 © Dr. Mark Llewellyn e

UML Showing Interface

GeometricObject << interface >>
java.lang.Comparable
JZAN

+ compareTo(obj: Object): int

AN

Rectangle

JZAN

ComparableRectangle

COP 3330: Classes In Java — Part 3 © Dr. Mark Llewellyn

The Comparable Interface

 An Interface provides another form of generic
programming.

|t would be difficult to use a generic max method to

find the maximum of the objects without using an
Interface In our example. Why?

 Because 1t would be necessary to inherit the
Comparable and another class, such as Rectangle,

at the same time, which involves multiple inheritance,
which is not allowed in Java.

’

COP 3330: Classes In Java - Part 3 Page 50 © Dr. Mark Llewellyn g").

The Comparable Interface

« The Object class contains the equals

method, which Is intended for the subclasses of
the Object class to override In order to

compare whether the contents of the objects are
the same.

« Suppose that the Object class contains the
compareTo method, as defined In the
Comparable Interface: the new max method

can be used to compare a list of any objects.

’

COP 3330: Classes In Java — Part 3 Page 51 © Dr. Mark Llewellyn g").

The Comparable Interface

* Whether a compareTo method should be included in
the Object class Is debatable. Since the
compareTo method Is not defined in the Object
class, the Comparable Interface Is created in Java to

enable objects to be compared if they are instances of
the Comparable Interface.

[t is strongly recommended that compareTo should be
consistent with equals. That s, for two objects ob71
and obj2, objl.compareTo (obj2) == 0, Iff
objl.equals (obj2) IStrue.

’

COP 3330: Classes In Java — Part 3 Page 52 © Dr. Mark Llewellyn g").

Interfaces vs. Abstract Classes

* An Interface can be used In the same way as an abstract class,
but declaring an interface is different from describing an
abstract class. The table below summarizes the differences.

Variables

Constructors

Methods

Constructors are invoked by
subclasses through constructor

Abstract . - -
| No restrictions chaining. An abstract class No restrictions
class cannot be instantiated using the
new operator.
All variables must | No constructors. An interface Al mgthods muist be
. : : i public
Interface | be public cannot be instantiated using the

static final

new operator.

abstract instance
methods

’

COP 3330: Classes In Java - Part 3 Page 53 © Dr. Mark Llewellyn g").

Interfaces vs. Abstract Classes

« Java allows only single inheritance for class extension,
but multiple extensions for interfaces.

— For example,

public class NewClass extends BaseClass
implements Interfacel, Interface?2,.
InterfaceN {

COP 3330: Classes In Java — Part 3 Page 54 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

* An Interface can inherit other interfaces using the
extends keyword. Such an interface Is called a

subinterface.

— FQrexan“ﬂe, public interface NewlInterface extends
Interfacel, . . ., InterfaceN {
//constants and abstract methods

« A class Implementing NewInterface must

Implement the abstract methods defined In
NewInterface, Interfacel,.. and

InterfaceN.

#
COP 3330: Classes In Java — Part 3 Page 55 © Dr. Mark Llewellyn @j

Interfaces vs. Abstract Classes

An Interface can extend other interfaces but not
classes.

A class can extend its superclass and Implement
multiple interfaces.

All classes share a single root, the Object class, but
there Is no single root for interfaces.

Like a class, an interface also defines a type. A
variable of an interface type can reference any instance
of the class that implements the interface. If a class
Implements an interface, the interface iIs like a
superclass for the class.

’

COP 3330: Classes In Java - Part 3 Page 56 © Dr. Mark Llewellyn g").

Interfaces vs. Abstract Classes

* You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice
versa.

— For example, suppose that c Is an instance of Class2 (see
the diagram on the next page) . Then c Is also an instance
of Object, Classl, Interfacel,
Interfacel.l, Interfacel.?2, Interface?.l

and Interface?.?2.

e Class names are nouns, interface names can be nouns
or adjectives.

#
COP 3330: Classes In Java — Part 3 Page 57 © Dr. Mark Llewellyn @j

Interfaces vs. Abstract Classes

Interfacel.2 Interface2.2

Interfacel

Interfacel.l Interface2.1

AN

Object Q Classl Q

Classl implements Interfacel. Interfacel extends Interfacel.l and
Interfacel.2. Class2 extends Classl and implements Interface2.1 and
Interface2.2

COP 3330: Classes In Java — Part 3 Page 58 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

Abstract methods and interfaces can both be used to specify
common behavior of objects. How do you decide whether to
use an interface or a class?

In general, a strong is-a relationship that clearly describes a
parent-child relationship should be modeled using classes.

A weak is-a relationship, also known as an is-kind-of

relationship, indicates that an object possesses a certain
property. A weak is-a relationship can be modeled using

Interfaces.

In general, interfaces are preferred over classes because an
Interface can represent a common supertype for unrelated
classes.

’

COP 3330: Classes In Java - Part 3 Page 59 © Dr. Mark Llewellyn g").

