
COP 3330: Classes In Java – Part 3 Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Classes In Java – Part 3

Abstract Classes and Interfaces

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Classes In Java – Part 3 Page 2 © Dr. Mark Llewellyn

Abstract Classes

• In the inheritance hierarchy, classes become

more specific and concrete with each new

subclass. If you move from a subclass back up

to a superclass, the classes become more general

and less specific.

• Class design should ensure that a superclass

contains common features of its subclasses.

• Sometimes a superclass is so abstract that it

cannot have any specific instances. Such a class

is called an abstract class.

COP 3330: Classes In Java – Part 3 Page 3 © Dr. Mark Llewellyn

Abstract Classes

• Recall our GeometricObject class that was

the superclass for Circle and Rectangle.

• The GeometricObject class models

common features of geometric objects.

• Both the Circle and Rectangle classes

contain the getArea() and

getPerimeter() methods for computing the

area and perimeter of a circle and a rectangle.

COP 3330: Classes In Java – Part 3 Page 4 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double

+ setWidth(width: double): void

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void

+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean

− dateCreated: java.util.Date

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

Original UML classes

COP 3330: Classes In Java – Part 3 Page 5 © Dr. Mark Llewellyn

The original Rectangle class

COP 3330: Classes In Java – Part 3 Page 6 © Dr. Mark Llewellyn

The original Circle class

COP 3330: Classes In Java – Part 3 Page 7 © Dr. Mark Llewellyn

Abstract Classes

• However, our earlier design was somewhat

lacking in that you can compute the area and

perimeter of all geometric objects, hence these

are not properties of circles or rectangles, but of

geometric objects.

• A better design would be to declare the
getArea() and getPerimeter() methods

in the GeometricObject class. But there is

a problem doing this. What is the problem?

COP 3330: Classes In Java – Part 3 Page 8 © Dr. Mark Llewellyn

Abstract Classes

• The problem is that in the GeometricObject
class we can’t provide an implementation for
these methods because their implementation
depends on the specific type of geometric object.

– To compute the area of a circle we need to use the
expression perimeter = 2πr, but for a rectangle
the expression is perimeter =

2(height+width).

• In order to define these methods in the
GeometricObject class, they need to be defined
as abstract methods.

COP 3330: Classes In Java – Part 3 Page 9 © Dr. Mark Llewellyn

Abstract Classes

• An abstract method is specified using the abstract modifier in
the method header.

– Example:

public abstract double getArea();

• Similarly, an abstract class is denoted using the abstract

modifier in the class header.

– Example:

– public abstract class GeometricObject {

. . . }

• In UML notation, the names of abstract classes and their methods
are italicized (see pages 9-10 of Introduction to UML notes).

COP 3330: Classes In Java – Part 3 Page 10 © Dr. Mark Llewellyn

Abstract Classes

• Abstract classes are like regular classes with data fields and
methods, but you cannot create instances of abstract classes using
the new operator.

• An abstract method is a method signature without
implementation. Its implementation is provided by the
subclasses.

• Any class that contains an abstract method must be declared
abstract.

• The constructor of an abstract class is declared protected,
because it is used only by subclasses. When you create an
instance of a concrete subclass, the subclass’s parent class
constructor is invoked to initialize data fields in the parent class.

• Let’s now reconsider the GeometricObject case and redesign it
using abstract classes and methods.

COP 3330: Classes In Java – Part 3 Page 11 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double

+ setWidth(width: double): void

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void

+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean

− dateCreated: java.util.Date

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

The original UML

diagram for the

GeometricObject

hierarchy

COP 3330: Classes In Java – Part 3 Page 12 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double

+ setWidth(width: double): void

+ getHeigth(): double

+ setHeight(height: double): void

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean

− dateCreated: java.util.Date

GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

+ getArea(): double

+ getPerimeter(): double

The new UML

diagram for the

GeometricObject

hierarchy using an

abstract class and

methods

Abstract methods

(italics)

Abstract class (italics)

Methods
getArea and

getPerimeter

are overridden in
Circle and

Rectangle.

Overridden

methods are

commonly

generally omitted

in the UML for

subclasses.

Constructor

denoted as
protected

COP 3330: Classes In Java – Part 3 Page 13 © Dr. Mark Llewellyn

Abstract Classes

• Now let’s re-write the GeometricObject class
using abstract methods which will convert it into an
abstract class.

• What changes will we need to make to the Circle
and Rectangle classes?

• Answer: Absolutely nothing! We will need to
provide implementations for the getArea() and
getPerimeter() methods in both classes, but
they already have them (thus they override the ones
defined in the GeometricObject class!)

COP 3330: Classes In Java – Part 3 Page 14 © Dr. Mark Llewellyn

Declare class as abstract

Denote constructor as protected

(Go to page 23 for more

information on this modifier.)

COP 3330: Classes In Java – Part 3 Page 15 © Dr. Mark Llewellyn

Declare abstract method getArea()

Declare abstract method getPerimeter()

Note: No braces!

COP 3330: Classes In Java – Part 3 Page 16 © Dr. Mark Llewellyn

Abstract Classes

• Now let’s write a class to test the abstract version of the
GeometricObject class.

• We’ll use the example to illustrate not only how
abstract classes work, but also illustrate the advantages
of using abstract classes.

• Notice that if the methods getArea and
getPerimeter where only defined in the Circle

and Rectangle classes and not in the
GeometricObject class, we would not be able to
define the equalArea and displayObject

methods shown in this example.

COP 3330: Classes In Java – Part 3 Page 17 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double

+ setWidth(width: double): void

+ getHeigth(): double

+ setHeight(height: double): void

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean

− dateCreated: java.util.Date

GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

+ getArea(): double

+ getPerimeter(): double

TestAbstractGeometricObject

+ equalArea(x:

AbstractGeometricObject, y:

AbstractGeometricObject): boolean

+ displayGeometricObject (x:

AbstractGeometricObject): void

COP 3330: Classes In Java – Part 3 Page 18 © Dr. Mark Llewellyn

COP 3330: Classes In Java – Part 3 Page 19 © Dr. Mark Llewellyn

COP 3330: Classes In Java – Part 3 Page 20 © Dr. Mark Llewellyn

COP 3330: Classes In Java – Part 3 Page 21 © Dr. Mark Llewellyn

Interesting Points On Abstract Classes

• An abstract method cannot be contained in a nonabstract
class.

• If a subclass of an abstract superclass does not implement
all the abstract methods, the subclass must also be declared
abstract. In other words, in a nonabstract subclass extended
from an abstract class, all the abstract methods must be
implemented, even if they are not used in the subclass.

• Abstract methods cannot be static.

• An abstract class cannot be instantiated using the new
operator, but you can still define its constructors, which are
invoked implicitly by the constructors of its subclasses. For
example, the constructors of GeometricObject are
invoked in the Circle and Rectangle classes.

COP 3330: Classes In Java – Part 3 Page 22 © Dr. Mark Llewellyn

Interesting Points On Abstract Classes

• A class that contains any abstract methods, must be declared
as abstract. However, it is possible to declare an abstract
class that contains no abstract methods! In this case, you
cannot create instances of the class using the new operator.
This class would be used as a base class for defining a new
subclass only.

• A subclass can be abstract even if its superclass is concrete.
For example, the Object class is concrete, but its
subclasses, such as GeometricObject, may be abstract.

• A subclass can override a method from its superclass to
declare it abstract. This is very unusual, but is useful when
the implementation of the method in the superclass becomes
invalid in the subclass. In this case, the subclass must be
declared abstract.

COP 3330: Classes In Java – Part 3 Page 23 © Dr. Mark Llewellyn

More On Accessibility Modifiers

• So far this semester, we’ve mostly used public and private

accessibility modifiers for our class variables and methods. With

the introduction of abstract classes, we now need to expand this to

include the protected modifier.

• A protected data or protected method in a public class can be

accessed by any class in the same package or its subclasses, even

if the subclasses are in different packages.

• Packages are simply a way to organize files into different

directories, usually based on functionality, usability, or category.

Packaging is a way to avoid class name collisions when the same

class name is used.

• The accessibility modifiers are summarized in the table on the

next page.

COP 3330: Classes In Java – Part 3 Page 24 © Dr. Mark Llewellyn

More On Accessibility Modifiers

Modifier on

members in a

class

Access from

the same

class

Access from

the same

package

Access from a

subclass

Access from a

different

package

public yes yes yes yes

protected yes yes yes no

(default) yes yes no no

private yes no no no

COP 3330: Classes In Java – Part 3 Page 25 © Dr. Mark Llewellyn

public class C1{

public int x;

protected int y;

int z;

private int u;

protected void m() { }

}

package p1:

public class C2{

C1 o = new C1();

can access o.x;

can access o.y;

can access o.z;

cannot access o.u;

can invoke o.m();

}

public class C3

extends C1{

can access x;

can access y;

can access z;

cannot access u;

can invoke m();

}

public class C4

extends C1{

can access x;

can access y;

cannot access z;

cannot access u;

can invoke m();

}

public class C5{

C1 o = new C1();

can access o.x;

cannot access o.y;

cannot access o.z;

cannot access o.u;

cannot invoke o.m();

}

package p2:

COP 3330: Classes In Java – Part 3 Page 26 © Dr. Mark Llewellyn

More On Accessibility Modifiers

• Use the private modifier to hide members of a class
completely so that they cannot be accessed directly
from outside the class.

• Use no modifiers (default case) in order to allow the
members of the class to be accessed directly from any
class within the same package but not from other
packages.

• Use the protected modifier to enable the members
of the class to be accessed by the subclasses in any
package or classes in the same package.

• Use the public modifier to enable the members of the
class to be accessed by any class.

COP 3330: Classes In Java – Part 3 Page 27 © Dr. Mark Llewellyn

More On Accessibility Modifiers

• A class can be used in two ways: for creating instances of the
class, and for creating subclasses by extending the class.

• Make the members private if they are not intended for use
from outside the class.

• Make the members public if they are intended for the users
outside of the class.

• Make the fields or methods protected if they are intended for
the extenders of the class, but not the users of the class.

• The private and protected modifiers can be used only for
members of the class. The public modifier and the default
modifier (i.e. no modifier) can be used on members of the class
as well as on the class itself. A class with no modifier (i.e., not a
public class) is not accessible by classes from other packages.

COP 3330: Classes In Java – Part 3 Page 28 © Dr. Mark Llewellyn

More On Accessibility Modifiers

• One additional note – a subclass may override a
protected method in its superclass and

change its visibility to public. However, a

subclass cannot weaken the accessibility of a

method defined in the superclass.

• For example, if a method is defined as public

in the superclass, it must be defined as public

in the subclass.

COP 3330: Classes In Java – Part 3 Page 29 © Dr. Mark Llewellyn

Preventing Extending and Overriding

• Sometimes you may want to prevent classes

from being extended. In such cases, use the
final modifier to indicate that a class is final

and thus cannot be a parent class.

– In Java, the Math class and the String class (among

others) are defined as final meaning that you cannot

extend the class.

• You can also define a method to be final, a final

method cannot be overridden by its subclasses.

COP 3330: Classes In Java – Part 3 Page 30 © Dr. Mark Llewellyn

Interfaces

• An interface is a class-like construct that contains only constants
and abstract methods. (It is class-like because it is not technically
a class but rather a partial template of what must be in a class that
implements the interface.)

• In many ways an interface is similar to an abstract class, but the
intent of an interface is to specify common behavior for objects.

• An interface is a Java type and can be used as such.

• The Java syntax for declaring an interface is:

modifier interface InterfaceName {

// constant declarations

// method signatures

}

COP 3330: Classes In Java – Part 3 Page 31 © Dr. Mark Llewellyn

Interfaces

• An interface cannot specify any method implementations. All
methods of an interface must be declared public abstract.

• All of the variables of an interface must be declared public,
final and static.

• All of the methods of an interface must be public.

– Since all data fields are public final static and all methods are public
abstract in an interface, Java allows these modifiers to be omitted in an
interface declaration. Therefore, the following declarations are equivalent.

public interface T {

public static final int K = 1;

public abstract void m();

}

public interface T {

int K = 1;

void m();

}

equivalent

COP 3330: Classes In Java – Part 3 Page 32 © Dr. Mark Llewellyn

Interfaces

• An interface is treated like a special class in
Java. Each interface is compiled into a separate
bytecode file, just like a regular class.

• As with an abstract class, you cannot create an
instance from an interface using the new

operator, but in most cases you can use an
interface more or less the same way that you use
an abstract class.

– For example, you can use an interface as a data type
for a variable, as the result of casting, and so on.

COP 3330: Classes In Java – Part 3 Page 33 © Dr. Mark Llewellyn

Interfaces

• The relationship that exists between a class that
uses an interface and the interface itself is
known as interface inheritance.

• Interface inheritance and class inheritance are
essentially the same thing, although in Java a
class can use class inheritance from only one
class (its superclass), but can use interface
inheritance from several interfaces.

• Typically both forms are simply referred to as
inheritance.

COP 3330: Classes In Java – Part 3 Page 34 © Dr. Mark Llewellyn

Interfaces

• Lets’ create a simple interface:

// an interface to describe how to eat

public interface Edible {

public abstract String howToEat();

}

• The Edible interface can now be used anytime you want

to specify how something should be eaten.

• Using an interface is accomplished by letting the class

for an object implement the interface.

COP 3330: Classes In Java – Part 3 Page 35 © Dr. Mark Llewellyn

Use the keyword implements in

order for a class to utilize an interface.

Fruit does not implement the howToEat

method, it must be denoted as abstract.

COP 3330: Classes In Java – Part 3 Page 36 © Dr. Mark Llewellyn

COP 3330: Classes In Java – Part 3 Page 37 © Dr. Mark Llewellyn

The Comparable Interface

• Suppose you want to design a generic method to find the larger
of two objects. The objects could be students, circles, rectangles,
etc.

• Since compare methods are different for different types of
objects, you need to define a generic compare method to
determine the order of the two objects. Then you can tailor the
method to compare students, circles, rectangles, etc.

• For example, you could use student ID as the key for comparing
students, radius as the key for comparing circles, and area as the
key for comparing rectangles.

• We’ll use an interface to define a generic compareTo method,
as shown on the next page.

COP 3330: Classes In Java – Part 3 Page 38 © Dr. Mark Llewellyn

The Comparable Interface

• The compareTo method determines the order of this

object with the specified object obj, and returns a

negative integer, zero, or a positive integer if this object

is less than, equal to, or greater than the specified object

obj.

// Interface for comparing object – as defined in java.lang

package java.lang;

public interface Comparable {

public int compareTo(Object obj);

}

COP 3330: Classes In Java – Part 3 Page 39 © Dr. Mark Llewellyn

The Comparable Interface

• Many classes in the Java library (e.g., String and Date)
implement Comparable to define a natural order for the
objects. If you look at the source code of these classes, you
will see the following definitions:

public class String extends

Object implements Comparable {

//class body omitted

}

public class Date extends

Object implements Comparable {

//class body omitted

}

COP 3330: Classes In Java – Part 3 Page 40 © Dr. Mark Llewellyn

The Comparable Interface

• Thus, strings are comparable, and so are dates.
Let s be a String object and d be a Date

object. All of the following expressions are true:

s instanceof String

s instanceof Object

s instanceof Comparable

d instanceof java.util.Date

d instanceof Object

d instanceof Comparable

COP 3330: Classes In Java – Part 3 Page 41 © Dr. Mark Llewellyn

The Comparable Interface

• Now we can declare a generic max method for finding the larger
of two objects.

• Let’s write two different versions and see which one is better.

COP 3330: Classes In Java – Part 3 Page 42 © Dr. Mark Llewellyn

The Comparable Interface

• Here’s version #2:

COP 3330: Classes In Java – Part 3 Page 43 © Dr. Mark Llewellyn

The Comparable Interface
• Which of the two versions of Max is better?

• Version #1 is simpler than the version #2. In version #2, obj1 is
declared as Object, and (Comparable)obj1 tells the
compiler to cast obj1 into Comparable so that the
compareTo method can be invoked from obj1. However, no
casting is needed in version #1, since obj1 is declared as
Comparable.

• The max method in version #1 is more robust that the one in
version #2. You must invoke the max method with two
comparable objects.

– Suppose you were to invoke max with two noncomparable objects such
as: Max.max(anyObject1, anyObject2); The compiler would
detect an error using version #1, because anyObject1 is not an instance
of Comparable. In version #2 however, the compiler will not detect an
error but a run-time error (ClassCastException) would occur
because anyObject1 is not an instance of Comparable and cannot be
cast into Comparable.

COP 3330: Classes In Java – Part 3 Page 44 © Dr. Mark Llewellyn

The Comparable Interface

• So, version #1 is the better solution to our problem.

• We’ll assume that this is the version that will be included in our
Comparable interface.

• Since strings and dates are comparable, you could use the max
method to find the larger of two instances of String or Date
as shown in the examples below:

String s1 = “abcedf”;

String s2 = “abcdee”;

String s3 = (String)Max.max(s1, s2);

Date d1 = new Date();

Date d2 = new Date();

Date d = (Date)Max.max(d1, d2);

The return value from the
max method is of the

Comparable type, so you

need to use explicit casting.

COP 3330: Classes In Java – Part 3 Page 45 © Dr. Mark Llewellyn

The Comparable Interface

• As things stand right now, we cannot use the
max method to find the larger of two instances

of Rectangle. Why?

• Because the Rectangle class does not

implement the Comparable interface (it only

extended the GeometricObject class).

• So, let’s declare a new Rectangle class that

implements the Comparable interface. This is

shown on the next page.

COP 3330: Classes In Java – Part 3 Page 46 © Dr. Mark Llewellyn

The ComparableRectangle Class

COP 3330: Classes In Java – Part 3 Page 47 © Dr. Mark Llewellyn

Modification of the TestCircleRectangle

Class to use ComparableRectangle

objects

COP 3330: Classes In Java – Part 3 Page 48 © Dr. Mark Llewellyn

Using MaxVersion1 class

and max method

Using compareTo method

in ComparableRectangle

class

COP 3330: Classes In Java – Part 3 Page 49 © Dr. Mark Llewellyn

UML Showing Interface

GeometricObject

Rectangle

ComparableRectangle

<< interface >>

java.lang.Comparable

+ compareTo(obj: Object): int

COP 3330: Classes In Java – Part 3 Page 50 © Dr. Mark Llewellyn

The Comparable Interface

• An interface provides another form of generic

programming.

• It would be difficult to use a generic max method to

find the maximum of the objects without using an

interface in our example. Why?

• Because it would be necessary to inherit the

Comparable and another class, such as Rectangle,

at the same time, which involves multiple inheritance,

which is not allowed in Java.

COP 3330: Classes In Java – Part 3 Page 51 © Dr. Mark Llewellyn

The Comparable Interface

• The Object class contains the equals

method, which is intended for the subclasses of
the Object class to override in order to

compare whether the contents of the objects are

the same.

• Suppose that the Object class contains the

compareTo method, as defined in the

Comparable interface: the new max method

can be used to compare a list of any objects.

COP 3330: Classes In Java – Part 3 Page 52 © Dr. Mark Llewellyn

The Comparable Interface

• Whether a compareTo method should be included in

the Object class is debatable. Since the

compareTo method is not defined in the Object

class, the Comparable interface is created in Java to

enable objects to be compared if they are instances of

the Comparable interface.

• It is strongly recommended that compareTo should be

consistent with equals. That is, for two objects obj1

and obj2, obj1.compareTo(obj2) == 0, iff

obj1.equals(obj2) is true.

COP 3330: Classes In Java – Part 3 Page 53 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

• An interface can be used in the same way as an abstract class,

but declaring an interface is different from describing an

abstract class. The table below summarizes the differences.

Variables Constructors Methods

Abstract

class
No restrictions

Constructors are invoked by

subclasses through constructor

chaining. An abstract class

cannot be instantiated using the
new operator.

No restrictions

Interface
All variables must
be public

static final

No constructors. An interface

cannot be instantiated using the
new operator.

All methods must be
public

abstract instance

methods

COP 3330: Classes In Java – Part 3 Page 54 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

• Java allows only single inheritance for class extension,

but multiple extensions for interfaces.

– For example,

public class NewClass extends BaseClass

implements Interface1, Interface2,. . .,

InterfaceN {

. . .

}

COP 3330: Classes In Java – Part 3 Page 55 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

• An interface can inherit other interfaces using the

extends keyword. Such an interface is called a

subinterface.

– For example,

• A class implementing NewInterface must

implement the abstract methods defined in

NewInterface, Interface1,… and

InterfaceN.

public interface NewInterface extends

Interface1, . . ., InterfaceN {

//constants and abstract methods

. . .

}

COP 3330: Classes In Java – Part 3 Page 56 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

• An interface can extend other interfaces but not
classes.

• A class can extend its superclass and implement
multiple interfaces.

• All classes share a single root, the Object class, but
there is no single root for interfaces.

• Like a class, an interface also defines a type. A
variable of an interface type can reference any instance
of the class that implements the interface. If a class
implements an interface, the interface is like a
superclass for the class.

COP 3330: Classes In Java – Part 3 Page 57 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

• You can use an interface as a data type and cast a

variable of an interface type to its subclass, and vice

versa.

– For example, suppose that c is an instance of Class2 (see

the diagram on the next page) . Then c is also an instance

of Object, Class1, Interface1,

Interface1.1, Interface1.2, Interface2.1

and Interface2.2.

• Class names are nouns, interface names can be nouns

or adjectives.

COP 3330: Classes In Java – Part 3 Page 58 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

Object

Interface1

Class1 Class2

Interface1.1

Interface1.2

Interface2.1

Interface2.2

Class1 implements Interface1. Interface1 extends Interface1.1 and

Interface1.2. Class2 extends Class1 and implements Interface2.1 and

Interface2.2

COP 3330: Classes In Java – Part 3 Page 59 © Dr. Mark Llewellyn

Interfaces vs. Abstract Classes

• Abstract methods and interfaces can both be used to specify

common behavior of objects. How do you decide whether to

use an interface or a class?

• In general, a strong is-a relationship that clearly describes a

parent-child relationship should be modeled using classes.

• A weak is-a relationship, also known as an is-kind-of

relationship, indicates that an object possesses a certain

property. A weak is-a relationship can be modeled using

interfaces.

• In general, interfaces are preferred over classes because an

interface can represent a common supertype for unrelated

classes.

